Important Formulas of all Chapters of Chemistry Class 12

IMPORTANT FORMULAs of NCERT CHEMISTRY CLASS 12 

UNIT 1: SOLID STATE

1.     Density of the unit cell, 

                         d = ZM/a3NA

       Where,

 Z = No. of atoms per unit cell

M = Molar Mass/Atomic Mass

a = Edge Length of unit cell

NA = Avogadro Constant

      2. Efficiency of Packing in hcp and ccp structures = 74%

It means 74% of the available volume is occupied by spheres (atoms).

(Note: In FCC unit cell the atoms touch each other along the face diagonal)

Face diagonal,     4r = โˆš2a   ----------- (i)

                                           a = 4r/โˆš2---------- (ii)

                                          r = a/2โˆš2-------- (iii)

where, r = radius of the atom and a = edge length of unit cell.

 3. Efficiency of Packing in bcc structures = 68%

It means 68% of the available volume is occupied by spheres (atoms).

(Note: In BCC unit cell the atoms touch each other along the body diagonal)

Body diagonal,    4r = โˆš3a  ------------ (i)

                                         a = 4r/โˆš3----------- (ii)

                                         r = โˆš3a/4  ---------- (iii)

4. Packing efficiency in simple cubic lattice = 52.4%

It means 52.4% of the available volume is occupied by spheres (atoms).

(Note: In SCC unit cell the atoms touch each other along the edge)

a and r is related as:  

                            a = 2r ---------- (i)

                                        r = a/โˆš2 ---------- (ii)

5. Relationship between the nearest neighbours distance of an element (d) with edge length(a) of the unit cell and radius of the atom (r) :

i) In simple cubic element:  d = a = 2r, r = a/2

ii) In bcc element:  d = 4r = โˆš3, r = โˆš3a/4

iii) In fcc element:  d = 4r = โˆš2a, r = a/2โˆš

where, d = distance between nearest neighbours.

 UNIT 2 : SOLUTIONS


1. Mass %  =  (Mass of solute/Mass of solution) x 100

2. Volume %  =  (Volume of solute/Volume of solution) x 100

3. ppm (A)  =  (Mass of component A/Total mass of solution) x 106

4. Molarity (M) = No. of moles of solute / Volume of Solution (in L)

= nB / V (in L)   =   (wB x 1000)/(mB x V {in mL})

Here, nB is the no. of moles of Solute and wB is the given mass of solute.

5. Molarity equation (Dilution formula):  M1V1  =  M2V2

6. Molarity of a mixture:  Mmixture  =  (M1V1  +   M2V2)/(V1  +  V2)

7. Molarity (M)  =  (10 x X x d)/Molecular mass of solute

where, X  =  mass%,  d  =  density of solution

8. Molality (m)  =  No. of moles of solute / Weight of Solvent (in Kg)

 = nB /wA (in Kg)  = (nB x 1000)/wA (in g)  =  (wB x 1000)/(mB x wA{in g})

Here, nB is the no. of moles of Solute,  wB is the given mass of Solute and wA is the given mass of Solvent

9. Mole fraction (X):

XA  =  nA/(nA + nB);  XB  =  nB/(nA + nB) 

{Note:  XA + XB = 1)

nA & nB are the no. of moles of component A & B respectively

10. Henryโ€™s Law: The partial pressure of the gas in vapour phase (P) is proportional to the mole fraction of the gas (X) in the solution.

 



                         P  =  kHX


where, kH  =  Henryโ€™s Law constant.                                        

                                                                                                              

11. Raoultโ€™s Law: i) For a solution of volatile liquids, the partial vapour pressure of each component in the solution is directly proportional to its mole fraction.

For component 1:  P1  ฮฑ  X1

                                  P1  =  P10X1

where, P10 =  V.P. of pure component 1.

For component 2:  P2 ฮฑ  X2

                                  P2  =  P20X2

where, P20 =  V.P. of pure component 2.

 ii) In case of non-volatile solute:  (PA0  -  PA)/ PA0  =  XB                            

12. The total vapour pressure (PTotal) over the solution phase in the container is equal to the sum of partial pressures of the components of the solution. (Daltonโ€™s Law)

i.e.  PTotal  =  P1  +  P2          (where X1  + X2  =  1)

                                                     =  P10X1  + P20X2            

                                          =  P10  +  (P20  -  P10)X2

13. Colligative properties:

i) Relative lowering of vapour pressure:

(PA0  -  PA)/ PA0  =  XB  =  nB/(nA + nB)   {another form of Raoultโ€™s Law).

                                                    OR

(PA0  -  PA)/ PA0  =  XB  =  nB/nA  =  (wB x MA)/(MB x wA)

Here wA & wB are the given mass of component A & B, MA & MB are the molar mass of component A & B.

ii) Elevation of Boiling point (โˆ†Tb):

โˆ†Tb  =  kbm  โ€ฆโ€ฆโ€ฆ(i) { m  =  (nB x 1000)/wA }

โˆ†Tb  =  (kb x wB x 1000)/(MB x wA)  โ€ฆโ€ฆโ€ฆ(ii)

MB  =  (kb x wB x 1000)/(โˆ†Tb x wA)  โ€ฆโ€ฆโ€ฆ(iii)

โˆ†Tb  =  Tb  -  Tb0  โ€ฆโ€ฆโ€ฆ(iv)

Tb  =  โˆ†Tb  +  Tb0  โ€ฆโ€ฆโ€ฆ(v)

kb  =  [R x MA x (Tb0)2]/[1000 x โˆ†fusH]  โ€ฆโ€ฆโ€ฆ(vi)

where, โˆ†fusH = enthalpy of fusion of solvent; MB = Molar mass of solute; wA = Mass of solvent; wB = Mass of solute; kB = Boiling point elevation constant (Ebullioscopic constant).

iii) Depression of Freezing point (โˆ†Tf):

 โˆ†Tf  =  kfm

โˆ†Tf  =  (kf x wB x 1000)/(MB x wA)

MB  =  (kf x wB x 1000)/(โˆ†Tf x wA)

โˆ†Tf  =  Tf0  -  Tf

Tf  =  Tf0  +  โˆ†Tf 

kf  =  [R x MA x (Tf0)2]/[1000 x โˆ†vapH]

where, R = gas constant; Tf0 = Freezing point of pure solvent; Tf = Freezing point of solution;

kf = Freezing point depression constant or cryoscopic constant; โˆ†vapH = enthalpy of vapourisation.

iv) Osmotic pressure (ฯ€):

ฯ€V  =  nBRT

ฯ€  =  nBRT/V  =  CRT  =  MRT  (where C = M {Molarity of solution})

ฯ€  =  (wBRT)/(mB x V)

14. Vanโ€™t Hoff factor (i):

i  =  Normal molar mass/Abnormal molar mass

i  =  Observed colligative property/Calculated colligative property

i  =  (Total no. of moles of particles after association or dissociation)/(No. of moles of particles before association or dissociation)

15. ฮฑ  =  (i  -  1)/(n  -  1)

where, ฮฑ = degree of dissociation; i = Vanโ€™t Hoff factor; n = no. of ions  produced per formula of the compound.

16. ฮฑ  =  [i  -  1]/[(1/n)   -  1]

where, ฮฑ = degree of association [(1/n) < 1]

17. If  i  =  1;  Solute behaves normally ( neither association or dissociation)

i  =  ยฝ;  Solute is dimer

i  =  ยผ;  Solute is tetratomic (eg. P4)

i  =  1/8;  Solute is octa atomic (eg. S8)

i  >  1;  Solute undergoes dissociation

i  <  1;  Solute undergoes association

18. Modified equations for Colligative properties:

(PA0  -  PA)/ PA0  =  iXB 

โˆ†Tb  =  ikbm

โˆ†Tf  =  ikfm

ฯ€  =  inBRT/V

 UNIT 3 : ELECTROCHEMISTRY


1. Electrical resistance (R) of electrolytic solution:  R  =  ฯl/A

2. Resistivity  (ฯ)  =  RA/l

3. Conductance (G)  =  1/R  =  A/ฯl  =  kA/l

4. Conductivity (ฮบ)  =  1/ฯ  =  l/RA  =  Gl/A;  (1/R = G)

where, A = Cross sectional area of cell; l = length of cell

ฮบ  =  (l/A) x (1/R)  =  Cell constant x Conductance

5. Cell constant of the conductivity cell (G*) =  l/A  =  Conductivity/Conductance

6. ฮบ  =  Cell constant/R  =  G*/R

7. G*  =  ฮบ x R

8. Molar conductivity (ษ…m) =  ฮบ/C  =  1000 x ฮบ/M

9. Kohlrausch law of independent migration of ions:

ษ…m0  =  ฮฝ+ฮป+0  +  ฮฝ-ฮป-0

where, ษ…m0 = limiting molar conductivity; ฮป+0 and ฮป-0 are the limiting molar conductivities of cation and anion respectively; ฮฝ+ = no. of cations; ฮฝ- = no. of anions.

10.   =  ษ…mc/ษ…m0 

where, ษ…mc = molar conductivity at concentration โ€˜Cโ€™.

11. ka  =  Cฮฑ2/(1  -  ฮฑ)

ka  =  Cฮฑ2  (ฮฑ << 1)

where, ฮฑ = Degree of dissociation; ka = Dissociation constant of weak acid like acetic acid.

12. Quantity of electricity passed (Q)  =  It

13. Q  =  nF

where, I = Current in amperes; t = Time in sec; Q = no. of coulombs required; n = no. of moles of e-s involved; F = Faradayโ€™s constant = 96,487 Cmol-1 ~ 96,500 Cmol-1.

14. Nernst Equation:

Nernst Equation for the electrode at 298K:

EMn+/M  =  E0Mn+/M   +  (0.059/n)log[Mn+]

Cell potential for the cell (emf of the cell):

Ecell  =  E0cell  +   (0.059/n)log [reduced form]/[Oxidised form]

where, E0cell =  E0cathode  -  E0anode

Ecell   =  E0cell  -  (0.059/n)log[products]/[reactants]

15. At Equilibrium, Ecell = 0,

therefore E0cell  =  (0.059/n)log kc

E0cell  =  (2.303 RT/nF) log kc

16. โˆ†rG0  =  -2.303 RT log kc

17. โˆ†rG0  =  -nFEำฉcell

18. If Ecell is positive, โˆ†G = negative; ie cell will work (spontaneously)

If Ecell is negative, โˆ†G = positive; ie cell will not work (non-spontaneously)

If Ecell  =  0;  Cell is at equilibrium.

 

UNIT 4 : CHEMICAL KINETICS

 

1. ravg  =  - โˆ†[R]/โˆ†t  =  โˆ†[P]/โˆ†t

where, ravg = average rate of reaction

2. rinst  =  -d[R]/dt  =  d[P]/dt

where, rinst = instantaneous rate of a reaction

3. Rate of reaction  =  -(1/ฮฝR)d[R]/dt  =  (1/ฮฝP)d[P]/dt

            Where vR and vP are the stoichiometric coefficient of reactant and product,

4. Units for Rate of Reaction = molL-1s-1

5. Units for rate constant (k)  =  (molL-1)1-ns-1

1st order reaction n = 1; k = s-1

2nd order reaction n = 2; k = mol-1Ls-1

0 order reaction n = 0; k = molL-1s-1

6. For a reaction aA + bB + cC -----ร  Product

 Rate = k [A]x[B]y[C]z

Overall order of a reaction = x + y + z. (x, y and z may same as a, b and c)

7. Integrated rate equation for zero order reaction:

k  =  ([R]0  -  [R])/t


 

k  =  - slope (m = - k)

[R]  =  -kt  +  [R]0                                                     


     y  =  mx  +  c

          


8. Integrated rate equation for first order reaction:

 k  =  (1/t) ln [R]0/[R]

 k  =  (2.303/t) log [R]0/[R]     OR  =  (2.303/t) log(a/a โ€“ x)



 ln[R]  =  - kt  +  ln[R]0




  k  =  - slope  =  - m


                    


      

    log [R]0/R  =  kt/2.303 

     y  =  mx


 

 



                                                   


                                 [R]  =  [R]0e-kt

9. Half-life of a reaction:

a) t1/2 for zero order reaction:

t1/2  =  [R]0/2k

t1/2  ฮฑ  R0;  t1/2  ฮฑ  1/k

b) t1/2 for first order reactions:

t1/2  =  0.693/k

First order reaction:

i)t1/2 is independent of [R]

ii) t1/2   ฮฑ  1/k

9. Arrhenius equation:

k  =  Ae-Ea/RT

lnk  =  -Ea/RT  +  lnA

lnk1  =  -Ea/RT1  +  lnA; at temperature T1

lnk2  =  -Ea/RT2  +  lnA; at temperature T2

ln (k2/k1)  =  Ea/R[(1/T1)  -  (1/T2)]


log (k2/k1)  =  Ea/2.303R[(1/T1)  -  (1/T2)]



                 


where, t1/2 = Half Life; [R]0 = Initial concentration of the reactant; [R] = concentration of the reactant at t; K = Rate constant; Ea = Activation energy; A = Arhennius factor; T = Absolute temperature; R = Gas constant.

*******************

By: Mr. S. K. Nigam

PGT Chemistry

Comments

  1. Thanku Sir.... Very Helpful ๐Ÿ˜„๐Ÿ˜„๐Ÿ˜„๐Ÿ˜„

    ReplyDelete

Post a Comment

If you have any doubt, let me know. I am there for solution.